Noise removal from MR images via iterative regularization based on higher-order singular value decomposition
نویسندگان
چکیده
Despite the success of magnetic resonance imaging techniques in many applications, acquisition noise is still a limiting factor for the quality and hence the usefulness of the techniques. In this paper, a new algorithm for denoising magnetic resonance images based on higher order singular value decomposition is proposed. The proposed algorithm first forms a single tensor from the noisy data. Next, higher order singular value decomposition is applied on this tensor with respect to a set of learned orthogonal directional matrices over the corresponding tensor mode. Finally, soft thresholding is iteratively applied to the calculated coefficients thereby suppressing the noise. The new algorithm is further enhanced with a post-process Wiener filtering. The proposed algorithm has two advantages over existing tensor denoising approaches: 1) it combines the noisy image slices into a single tensor, thereby exploiting non-local image similarity across slices; and 2) it uses an iterative regularization framework to suppress the noise. Experiments are conducted on synthetic and real magnetic resonance images to compare the performance of the proposed algorithm to state-of-the-art denoising approaches. The comparison is made quantitatively in terms of peak of signal-noise ratio, structural similarity index, and mean-absolute difference, and qualitatively through visual comparisons. The reS. Fegheh Yeganli E-mail: [email protected] Hasan Demirel E-mail: [email protected] Runyi Yu E-mail: [email protected] 1 Electrical and Electronic Engineering Dept., Eastern Mediterranean University, Gazimagusa, via Mersin 10, TURKEY sults demonstrate the competitive performance of the proposed algorithm.
منابع مشابه
روشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کاملNoise Effects on Modal Parameters Extraction of Horizontal Tailplane by Singular Value Decomposition Method Based on Output Only Modal Analysis
According to the great importance of safety in aerospace industries, identification of dynamic parameters of related equipment by experimental tests in operating conditions has been in focus. Due to the existence of noise sources in these conditions the probability of fault occurrence may increases. This study investigates the effects of noise in the process of modal parameters identification b...
متن کاملSingular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images
In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...
متن کاملCompressive Sensing of Color Images Using Nonlocal Higher Order Dictionary
This paper addresses an ill-posed problem of recovering a color image from its compressively sensed measurement data. Differently from the typical 1D vector-based approach of the state-of-the-art methods, we exploit the nonlocal similarities inherently existing in images by treating each patch of a color image as a 3D tensor consisting of not only horizontal and vertical but also spectral dimen...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal, Image and Video Processing
دوره 11 شماره
صفحات -
تاریخ انتشار 2017